Delivery included to the United States

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory An Effective Theory Approach to Understanding Neural Networks

Hardback (26 May 2022)

Save $6.25

  • RRP $84.77
  • $78.52
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 2-3 weeks

Publisher's Synopsis

This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.

About the Publisher

Cambridge University Press

Cambridge University Press dates from 1534 and is part of the University of Cambridge. We further the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

Book information

ISBN: 9781316519332
Publisher: Cambridge University Press
Imprint: Cambridge University Press
Pub date:
DEWEY: 006.31
DEWEY edition: 23
Language: English
Number of pages: 472
Weight: 1060g
Height: 221mm
Width: 289mm
Spine width: 33mm