Delivery included to the United States

The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations

The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations - London Mathematical Society Lecture Note Series

Paperback (22 Oct 2015)

Save $9.70

  • RRP $74.95
  • $65.25
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 2-3 weeks

Publisher's Synopsis

Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs.

About the Publisher

Cambridge University Press

Cambridge University Press dates from 1534 and is part of the University of Cambridge. We further the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

Book information

ISBN: 9781107477391
Publisher: Cambridge University Press
Imprint: Cambridge University Press
Pub date:
DEWEY: 515.3534
DEWEY edition: 23
Language: English
Number of pages: 173
Weight: 260g
Height: 228mm
Width: 152mm
Spine width: 10mm