Publisher's Synopsis
Statistical methods based on models with latent variables play an important role in the analysis of multivariate data. The subject can be approached theoretically or in an empirical, pragmatic way. The statistical problem is to make inferences about the latent variables and the relationships between them. Errors-in-variables models, factor analysis and latent structure models are all examples of this approach. This volume presents a selection of invited and contributed papers which address the problems involved in developing a unifying statistical theory for latent variable models.