Publisher's Synopsis
Virology is the study of viruses - submicroscopic, parasitic particles of genetic material contained in a protein coat - and virus-like agents. It focuses on the following aspects of viruses: their structure, classification and evolution, their ways to infect and exploit host cells for reproduction, their interaction with host organism physiology and immunity, the diseases they cause, the techniques to isolate and culture them, and their use in research and therapy. Virology is considered to be a subfield of microbiology or of medicine. Viruses can infect all forms of life (bacteria, plants, protozoa, fungi, insects, fish, reptiles, birds, and mammals); however, this section covers only viruses capable of causing human infections. Like other microorganisms, viruses may have played a role in the natural selection of animal species. A documented example is the natural selection of rabbits resistant to virulent myxoma virus during several epidemics deliberately induced to control the rabbit population in Australia. Indirect evidence suggests that the same selective role was played by smallpox virus in humans. Another possible, though unproved, mechanism by which viruses may affect evolution is by introducing viral genetic material into animal cells by mechanisms similar to those that govern gene transfer by bacteriophages. For example, genes from avirulent retrovirus integrated into genomes of chickens or mice produce resistance to reinfection by related, virulent retroviruses. The same relationship may exist for human retroviruses, since human leukemia-causing retroviruses have been reported. Viruses are small, subcellular agents that are unable to multiply outside a host cell (intracellular, obligate parasitism). The assembled virus (virion) is formed to include only one type of nucleic acid (RNA or DNA) and, in the simplest viruses, a protective protein coat. The nucleic acid contains the genetic information necessary to program the synthetic machinery of the host cell for viral replication. The protein coat serves two main functions: first, it protects the nucleic acid from extracellular environmental insults such as nucleases; second, it permits attachment of the virion to the membrane of the host cell, the negative charge of which would repel a naked nucleic acid. Once the viral genome has penetrated and thereby infected the host cell, virus replication mainly depends on host cell machinery for energy and synthetic requirements. Principles of Molecular Virology explores and explains the fundamental aspects of virology, including the structure of virus particles and genome, replication, gene expression, infection, pathogenesis and subviral agents. It will be of valuable for advanced graduates students in virology, molecular biology and microbiology; Medical students and infectious disease clinicians and immunologists; those entering the virology research area. Epidemiologic studies show that viral infections in developed countries are the most common cause of acute disease that does not require hospitalization. In developing countries, viral diseases also exact a heavy toll in mortality and permanent disability, especially among infants and children. Emerging viral diseases such as those due to HIV, ebola virus and hantavirus, appear regularly. Now that antibiotics effectively control most bacterial infections, viral infections pose a relatively greater and less controlled threat to human health. Some data suggest that the already broad range of established viral diseases soon may be expanded to include other serious human ailments such as juvenile diabetes, rheumatoid arthritis, various neurologic and immunologic disorders, and some tumors. Virology is the study of viruses - submicroscopic, parasitic particles of genetic material contained in a protein coat - and virus-like agents. It focuses on the following aspects of viruses: their structure, classification and evolution, their ways to infect and exploit host cells for reproduction, their interaction with host organism physiology and immunity, the diseases they cause, the techniques to isolate and culture them, and their use in research and therapy. Virology is considered to be a subfield of microbiology or of medicine. Viruses can infect all forms of life (bacteria, plants, protozoa, fungi, insects, fish, reptiles, birds, and mammals); however, this section covers only viruses capable of causing human infections. Like other microorganisms, viruses may have played a role in the natural selection of animal species. A documented example is the natural selection of rabbits resistant to virulent myxoma virus during several epidemics deliberately induced to control the rabbit population in Australia. Indirect evidence suggests that the same selective role was played by smallpox virus in humans. Another possible, though unproved, mechanism by which viruses may affect evolution is by introducing viral genetic material into animal cells by mechanisms similar to those that govern gene transfer by bacteriophages. For example, genes from avirulent retrovirus integrated into genomes of chickens or mice produce resistance to reinfection by related, virulent retroviruses. The same relationship may exist for human retroviruses, since human leukemia-causing retroviruses have been reported. Viruses are small, subcellular agents that are unable to multiply outside a host cell (intracellular, obligate parasitism). The assembled virus (virion) is formed to include only one type of nucleic acid (RNA or DNA) and, in the simplest viruses, a protective protein coat. The nucleic acid contains the genetic information necessary to program the synthetic machinery of the host cell for viral replication. The protein coat serves two main functions: first, it protects the nucleic acid from extracellular environmental insults such as nucleases; second, it permits attachment of the virion to the membrane of the host cell, the negative charge of which would repel a naked nucleic acid. Once the viral genome has penetrated and thereby infected the host cell, virus replication mainly depends on host cell machinery for energy and synthetic requirements. Principles of Molecular Virology explores and explains the fundamental aspects of virology, including the structure of virus particles and genome, replication, gene expression, infection, pathogenesis and subviral agents. It will be of valuable for advanced graduates students in virology, molecular biology and microbiology; Medical students and infectious disease clinicians and immunologists; those entering the virology research area. Epidemiologic studies show that viral infections in developed countries are the most common cause of acute disease that does not require hospitalization. In developing countries, viral diseases also exact a heavy toll in mortality and permanent disability, especially among infants and children. Emerging viral diseases such as those due to HIV, ebola virus and hantavirus, appear regularly. Now that antibiotics effectively control most bacterial infections, viral infections pose a relatively greater and less controlled threat to human health. Some data suggest that the already broad range of established viral diseases soon may be expanded to include other serious human ailments such as juvenile diabetes, rheumatoid arthritis, various neurologic and immunologic disorders, and some tumors. Virology is the study of viruses - submicroscopic, parasitic particles of genetic material contained in a protein coat - and virus-like agents. It focuses on the following aspects of viruses: their structure, classification and evolution, their ways to infect and exploit host cells for reproduction, their interaction with host organism physiology and immunity, the diseases they cause, the techniques to isolate and culture them, and their use in research and therapy. Virology is considered to be a subfield of microbiology or of medicine. Viruses can infect all forms of life (bacteria, plants, protozoa, fungi, insects, fish, reptiles, birds, and mammals); however, this section covers only viruses capable of causing human infections. Like other microorganisms, viruses may have played a role in the natural selection of animal species. A documented example is the natural selection of rabbits resistant to virulent myxoma virus during several epidemics deliberately induced to control the rabbit population in Australia. Indirect evidence suggests that the same selective role was played by smallpox virus in humans. Another possible, though unproved, mechanism by which viruses may affect evolution is by introducing viral genetic material into animal cells by mechanisms similar to those that govern gene transfer by bacteriophages. For example, genes from avirulent retrovirus integrated into genomes of chickens or mice produce resistance to reinfection by related, virulent retroviruses. The same relationship may exist for human retroviruses, since human leukemia-causing retroviruses have been reported. Viruses are small, subcellular agents that are unable to multiply outside a host cell (intracellular, obligate parasitism). The assembled virus (virion) is formed to include only one type of nucleic acid (RNA or DNA) and, in the simplest viruses, a protective protein coat. The nucleic acid contains the genetic information necessary to program the synthetic machinery of the host cell for viral replication. The protein coat serves two main functions: first, it protects the nucleic acid from extracellular environmental insults such as nucleases; second, it permits attachment of the virion to the membrane of the host cell, the negative charge of which would repel a naked nucleic acid. Once the viral genome has penetrated and thereby infected the host cell, virus replication mainly depends on host cell machinery for energy and synthetic requirements. Principles of Molecular Virology explores and explains the fundamental aspects of virology, includ