Publisher's Synopsis
Genetic engineering is the process of manually adding new DNA to an organism. The goal is to add one or more new traits that are not already found in that organism. Examples of genetically engineered (transgenic) organisms currently on the market include plants with resistance to some insects, plants that can tolerate herbicides, and crops with modified oil content. Genetic engineering can be utilized to improve the function of various metabolic and functional processes within an organism of interest. However, it is often the case that one wishes to endow a specific host organism with additional functionality and/or new phenotypic characteristics. Under these circumstances, the principles of genetic engineering can be utilized to express non-native genes within the host organism, leading to the expression of previously unavailable protein products. While this process has been extremely valuable for the development of basic scientific research and biotechnology over the past 50 years, it has become clear during this time that there are a multitude of factors that must be considered to properly express exogenous genetic constructs. Genetic engineering, also called genetic modification, is the direct manipulation of an organism's genome using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. Principles of Genetic Engineering covers a wide range of topics in genetic engineering of microorganisms, plants and animals. Specifically it covers both the natural and social sciences. In the natural sciences topics ranging from the genetic engineering of microorganisms to produce antibiotics, the gene targeting and transformation in plants, the generation of marker-free plants in response to biosafety concerns, as well as the generation of transgenic animals and those derived through cloning are covered. The book contributes chapters on the basics of genetic engineering, on applications of the technology to attempt to solve problems of greater importance to both society and industry, and comes to a close by reminding us of the moral responsibility we have to always keep in mind, that nature is a very fragile equilibrium and that we have already put it at risk. Leading scientists from different countries around the world contributed valuable articles on the basic applications and safety, as well as the ethical and moral considerations, of the powerful genetic engineering tools now available for modifying the molecules, pathways, and phenotypes of species of agricultural, industrial and even medical importance. This book presents insight into the modern tools of genome editing, their hurdles and their huge potential. Genetic engineering is the process of manually adding new DNA to an organism. The goal is to add one or more new traits that are not already found in that organism. Examples of genetically engineered (transgenic) organisms currently on the market include plants with resistance to some insects, plants that can tolerate herbicides, and crops with modified oil content. Genetic engineering can be utilized to improve the function of various metabolic and functional processes within an organism of interest. However, it is often the case that one wishes to endow a specific host organism with additional functionality and/or new phenotypic characteristics. Under these circumstances, the principles of genetic engineering can be utilized to express non-native genes within the host organism, leading to the expression of previously unavailable protein products. While this process has been extremely valuable for the development of basic scientific research and biotechnology over the past 50 years, it has become clear during this time that there are a multitude of factors that must be considered to properly express exogenous genetic constructs. Genetic engineering, also called genetic modification, is the direct manipulation of an organism's genome using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. Principles of Genetic Engineering covers a wide range of topics in genetic engineering of microorganisms, plants and animals. Specifically it covers both the natural and social sciences. In the natural sciences topics ranging from the genetic engineering of microorganisms to produce antibiotics, the gene targeting and transformation in plants, the generation of marker-free plants in response to biosafety concerns, as well as the generation of transgenic animals and those derived through cloning are covered. The book contributes chapters on the basics of genetic engineering, on applications of the technology to attempt to solve problems of greater importance to both society and industry, and comes to a close by reminding us of the moral responsibility we have to always keep in mind, that nature is a very fragile equilibrium and that we have already put it at risk. Leading scientists from different countries around the world contributed valuable articles on the basic applications and safety, as well as the ethical and moral considerations, of the powerful genetic engineering tools now available for modifying the molecules, pathways, and phenotypes of species of agricultural, industrial and even medical importance. This book presents insight into the modern tools of genome editing, their hurdles and their huge potential. Genetic engineering is the process of manually adding new DNA to an organism. The goal is to add one or more new traits that are not already found in that organism. Examples of genetically engineered (transgenic) organisms currently on the market include plants with resistance to some insects, plants that can tolerate herbicides, and crops with modified oil content. Genetic engineering can be utilized to improve the function of various metabolic and functional processes within an organism of interest. However, it is often the case that one wishes to endow a specific host organism with additional functionality and/or new phenotypic characteristics. Under these circumstances, the principles of genetic engineering can be utilized to express non-native genes within the host organism, leading to the expression of previously unavailable protein products. While this process has been extremely valuable for the development of basic scientific research and biotechnology over the past 50 years, it has become clear during this time that there are a multitude of factors that must be considered to properly express exogenous genetic constructs. Genetic engineering, also called genetic modification, is the direct manipulation of an organism's genome using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. Principles of Genetic Engineering covers a wide range of topics in genetic engineering of microorganisms, plants and animals. Specifically it covers both the natural and social sciences. In the natural sciences topics ranging from the genetic engineering of microorganisms to produce antibiotics, the gene targeting and transformation in plants, the generation of marker-free plants in response to biosafety concerns, as well as the generation of transgenic animals and those derived through cloning are covered. The book contributes chapters on the basics of genetic engineering, on applications of the technology to attempt to solve problems of greater importance to both society and industry, and comes to a close by reminding us of the moral responsibility we have to always keep in mind, that nature is a very fragile equilibrium and that we have already put it at risk. Leading scientists from different countries around the world contributed valuable articles on the basic applications and safety, as well as the ethical and moral considerations, of the powerful genetic engineering tools now available for modifying the molecules, pathways, and phenotypes of species of agricultural, industrial and even medical importance. This book presents insight into the modern tools of genome editing, their hurdles and their huge potential.