Publisher's Synopsis
Polymers are very large molecules that are made up of thousands - even millions - of atoms that are bonded together in a repeating pattern. The structure of a polymer is easily visualized by imagining a chain. The chain has many links that are connected together. In the same way the atoms within the polymer are bonded to each other to form links in the polymer chain. Polymers are created through chemical reactions known as polymerizations, and the majority are produced through two basic reaction types. The first type of polymerization reaction is known as a condensation polymerization. The second type of reaction is known as chain-growth polymerization. Polymer synthesis, also called polymerization, is the process by which monomers (small molecules) are covalently bonded to form a (usually long) polymer chain or network. Many materials found in nature are polymers. In fact, the basic molecular structure of all plant and animal life is similar to that of a synthetic polymer. Natural polymers include such materials as silk, shellac, bitumen, rubber, and cellulose. However, the majority of polymers or plastics used for engineering design are synthetic and often they are specifically formulated or "designed" by chemists or chemical engineers to serve a specific purpose. Other engineers (mechanical, civil, electrical, etc.) typically design engineering components from the available materials or, sometimes, work directly with chemists or chemical engineers to synthesize a polymer with particular characteristics. Some of the useful properties of various engineering polymers are high strength or modulus to weight ratios (light weight but comparatively stiff and strong), toughness, resilience, resistance to corrosion, lack of conductivity (heat and electrical), color, transparency, processing, and low cost. Many of the useful properties of polymers are in fact unique to polymers and are due to their long chain molecular structure. Polymer Synthesis and Characterization- Principles and Applications covers important techniques for polymer synthesis and characterization, and provides a comprehensive introduction to the basic principles of highlighted techniques. Polymers play a very important role in human life. In fact, our body is made of lot of polymers, e.g. Proteins, enzymes, etc. Other naturally occurring polymers like wood, rubber, leather and silk are serving the humankind for many centuries now. Modern scientific tools revolutionized the processing of polymers thus available synthetic polymers like useful plastics, rubbers and fiber materials. As with other engineering materials (metals and ceramics), the properties of polymers are related their constituent structural elements and their arrangement. This book introduces classification of polymers, processing and synthesis of polymers, followed by mechanism of deformation and mechanical behavior of polymers. Polymer Synthesis and Characterization will serve as a useful resource for industrial technicians and researchers in polymer chemistry and physics, material science, and analytical chemistry. Polymers are very large molecules that are made up of thousands - even millions - of atoms that are bonded together in a repeating pattern. The structure of a polymer is easily visualized by imagining a chain. The chain has many links that are connected together. In the same way the atoms within the polymer are bonded to each other to form links in the polymer chain. Polymers are created through chemical reactions known as polymerizations, and the majority are produced through two basic reaction types. The first type of polymerization reaction is known as a condensation polymerization. The second type of reaction is known as chain-growth polymerization. Polymer synthesis, also called polymerization, is the process by which monomers (small molecules) are covalently bonded to form a (usually long) polymer chain or network. Many materials found in nature are polymers. In fact, the basic molecular structure of all plant and animal life is similar to that of a synthetic polymer. Natural polymers include such materials as silk, shellac, bitumen, rubber, and cellulose. However, the majority of polymers or plastics used for engineering design are synthetic and often they are specifically formulated or "designed" by chemists or chemical engineers to serve a specific purpose. Other engineers (mechanical, civil, electrical, etc.) typically design engineering components from the available materials or, sometimes, work directly with chemists or chemical engineers to synthesize a polymer with particular characteristics. Some of the useful properties of various engineering polymers are high strength or modulus to weight ratios (light weight but comparatively stiff and strong), toughness, resilience, resistance to corrosion, lack of conductivity (heat and electrical), color, transparency, processing, and low cost. Many of the useful properties of polymers are in fact unique to polymers and are due to their long chain molecular structure. Polymer Synthesis and Characterization- Principles and Applications covers important techniques for polymer synthesis and characterization, and provides a comprehensive introduction to the basic principles of highlighted techniques. Polymers play a very important role in human life. In fact, our body is made of lot of polymers, e.g. Proteins, enzymes, etc. Other naturally occurring polymers like wood, rubber, leather and silk are serving the humankind for many centuries now. Modern scientific tools revolutionized the processing of polymers thus available synthetic polymers like useful plastics, rubbers and fiber materials. As with other engineering materials (metals and ceramics), the properties of polymers are related their constituent structural elements and their arrangement. This book introduces classification of polymers, processing and synthesis of polymers, followed by mechanism of deformation and mechanical behavior of polymers. Polymer Synthesis and Characterization will serve as a useful resource for industrial technicians and researchers in polymer chemistry and physics, material science, and analytical chemistry.