Publisher's Synopsis
Material properties of polycrystalline materials are often modeled in a similar fashion as single crystals thereby neglecting the internal microstructure. Unfortunately, most of the available deposition technologies only provide polycrystalline or amorphous rather than single crystal deposition. The only deposition process which provides single crystal growth in the processing reactor is the atomic layer deposition (ALD) which provides a very low growth rate and is therefore rather expensive with respect to time. Nevertheless, if crystalline structures have to be used, for instance in semiconducting materials, expensive single crystal deposition or growth methods have to be applied anyways. For most other applications, however, amorphous and polycrystalline regions are sufficient for device operation. There are numerous polycrystalline materials, including polycrystals whose crystals have a cubic symmetry. Polycrystals with cubic symmetry comprise minerals and metals such as cubic pyrites (FeS2), fluorite (CaF2), rock salt (NaCl), sylvite (KCl), iron (Fe), aluminum (Al), copper (Cu), and tungsten (W). It is assumed that many materials can be treated as a homogeneous and isotropic medium independently of the specific characteristics of their microstructure. It is clear that, in fact, this is impossible already because of the molecular structure of materials. For example, materials with polycrystalline structure, which consist of numerous chaotically located small crystals of different size and different orientation, cannot actually be homogeneous and isotropic. Each separate crystal of the metal is anisotropic. But if the volume contains very many chaotically located crystals, then the material as a whole can be treated as an isotropic material. Just in a similar way, if the geometric dimensions of a body are large compared with the dimensions of a single crystal, then, with a high degree of accuracy, one can assume that the material is homogeneous. The book "Polycrystalline Materials Structure, Properties and Application" is focused on contemporary investigations of plastic deformation, strength and grain-scale approaches, methods of synthesis, structurals, properties, and application of some polycrystalline materials. It is intended for students, post-graduate students, and scientists in the field of polycrystalline materials. Material properties of polycrystalline materials are often modeled in a similar fashion as single crystals thereby neglecting the internal microstructure. Unfortunately, most of the available deposition technologies only provide polycrystalline or amorphous rather than single crystal deposition. The only deposition process which provides single crystal growth in the processing reactor is the atomic layer deposition (ALD) which provides a very low growth rate and is therefore rather expensive with respect to time. Nevertheless, if crystalline structures have to be used, for instance in semiconducting materials, expensive single crystal deposition or growth methods have to be applied anyways. For most other applications, however, amorphous and polycrystalline regions are sufficient for device operation. There are numerous polycrystalline materials, including polycrystals whose crystals have a cubic symmetry. Polycrystals with cubic symmetry comprise minerals and metals such as cubic pyrites (FeS2), fluorite (CaF2), rock salt (NaCl), sylvite (KCl), iron (Fe), aluminum (Al), copper (Cu), and tungsten (W). It is assumed that many materials can be treated as a homogeneous and isotropic medium independently of the specific characteristics of their microstructure. It is clear that, in fact, this is impossible already because of the molecular structure of materials. For example, materials with polycrystalline structure, which consist of numerous chaotically located small crystals of different size and different orientation, cannot actually be homogeneous and isotropic. Each separate crystal of the metal is anisotropic. But if the volume contains very many chaotically located crystals, then the material as a whole can be treated as an isotropic material. Just in a similar way, if the geometric dimensions of a body are large compared with the dimensions of a single crystal, then, with a high degree of accuracy, one can assume that the material is homogeneous. The book "Polycrystalline Materials Structure, Properties and Application" is focused on contemporary investigations of plastic deformation, strength and grain-scale approaches, methods of synthesis, structurals, properties, and application of some polycrystalline materials. It is intended for students, post-graduate students, and scientists in the field of polycrystalline materials. Material properties of polycrystalline materials are often modeled in a similar fashion as single crystals thereby neglecting the internal microstructure. Unfortunately, most of the available deposition technologies only provide polycrystalline or amorphous rather than single crystal deposition. The only deposition process which provides single crystal growth in the processing reactor is the atomic layer deposition (ALD) which provides a very low growth rate and is therefore rather expensive with respect to time. Nevertheless, if crystalline structures have to be used, for instance in semiconducting materials, expensive single crystal deposition or growth methods have to be applied anyways. For most other applications, however, amorphous and polycrystalline regions are sufficient for device operation. There are numerous polycrystalline materials, including polycrystals whose crystals have a cubic symmetry. Polycrystals with cubic symmetry comprise minerals and metals such as cubic pyrites (FeS2), fluorite (CaF2), rock salt (NaCl), sylvite (KCl), iron (Fe), aluminum (Al), copper (Cu), and tungsten (W). It is assumed that many materials can be treated as a homogeneous and isotropic medium independently of the specific characteristics of their microstructure. It is clear that, in fact, this is impossible already because of the molecular structure of materials. For example, materials with polycrystalline structure, which consist of numerous chaotically located small crystals of different size and different orientation, cannot actually be homogeneous and isotropic. Each separate crystal of the metal is anisotropic. But if the volume contains very many chaotically located crystals, then the material as a whole can be treated as an isotropic material. Just in a similar way, if the geometric dimensions of a body are large compared with the dimensions of a single crystal, then, with a high degree of accuracy, one can assume that the material is homogeneous. The book "Polycrystalline Materials Structure, Properties and Application" is focused on contemporary investigations of plastic deformation, strength and grain-scale approaches, methods of synthesis, structurals, properties, and application of some polycrystalline materials. It is intended for students, post-graduate students, and scientists in the field of polycrystalline materials.