Delivery included to the United States

Optimization Algorithms for Distributed Machine Learning

Optimization Algorithms for Distributed Machine Learning - Synthesis Lectures on Learning, Networks, and Algorithms

Paperback (26 Nov 2023)

Save $0.10

  • RRP $47.49
  • $47.39
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 7 days

Publisher's Synopsis

This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.

Book information

ISBN: 9783031190698
Publisher: Springer International Publishing
Imprint: Springer
Pub date:
DEWEY: 006.31015196
DEWEY edition: 23
Language: English
Number of pages: 127
Weight: 240g
Height: 240mm
Width: 168mm
Spine width: 8mm