Publisher's Synopsis
The book focuses on the mathematical foundations of boundary integro-differential equation method, with a primary focus on reducing the hypersingular integrals in traditional boundary integral equations into boundary integro-differential equations with weak singularities. It briefly introduces the theory of distributions, while the boundary integral equations method is grounded in the fundamental solutions of linear partial differential equations, hence a relatively detailed exposition of the fundamental solutions of differential equations is also provided. In the subsequent chapters, the authors sequentially discuss the boundary integro-differential equation methods and theories for Laplace equation, Helmholtz equation, Navier equations, Stokes equations, among others. Furthermore, the book addresses the boundary integro-differential equation method for certain nonlinear problems, such as thermal radiation, variational inequalities, and Steklov eigenvalue problems. Lastly, it explores the symmetric coupling issues between finite element and boundary element methods.