Publisher's Synopsis
The advent of high-performance computing has benefited various disciplines in finding practical solutions to their problems. Signal processing, image processing, and data mining tools have been developed for effective analysis of information. Informatics studies the representation, processing, and communication of information in natural and engineered systems. It has computational, cognitive and social aspects. The central notion is the transformation of information - whether by computation or communication, whether by organisms or artifacts. Understanding informational phenomena - such as computation, cognition, and communication - enables technological advances. In turn, technological progress prompts scientific enquiry. The science of information and the engineering of information systems develop hand-in-hand. Informatics is the emerging discipline that combines the two. In natural and artificial systems, information is carried at many levels, ranging, for example, from biological molecules and electronic devices through nervous systems and computers and on to societies and large-scale distributed systems. It is characteristic that information carried at higher levels is represented by informational processes at lower levels. Each of these levels is the proper object of study for some discipline of science or engineering. Informatics aims to develop and apply firm theoretical and mathematical foundations for the features that are common to all computational systems. Progress in data mining applications and its implications are manifested in the areas of information management in healthcare organizations, health informatics, epidemiology, patient care and monitoring systems, assistive technology, large-scale image analysis to information extraction and automatic identification of unknown classes. Various algorithms associated with data mining have significantly helped to understand medical data more clearly, by distinguishing pathological data from normal data, for supporting decision-making as well as visualization and identification of hidden complex relationships between diagnostic features of different patient groups. In most of the fields predictive and modeling insilico research studies are on the rise. More computer based data, research articles are published in this field. The aim of this Book is to bring in informatics and data mining research, access both focused and multidisciplinary work in the area of informatics. This book also ponders to publish ideas, hypothesis and suggestions regarding software development cycles, informatics and data mining. The advent of high-performance computing has benefited various disciplines in finding practical solutions to their problems. Signal processing, image processing, and data mining tools have been developed for effective analysis of information. Informatics studies the representation, processing, and communication of information in natural and engineered systems. It has computational, cognitive and social aspects. The central notion is the transformation of information - whether by computation or communication, whether by organisms or artifacts. Understanding informational phenomena - such as computation, cognition, and communication - enables technological advances. In turn, technological progress prompts scientific enquiry. The science of information and the engineering of information systems develop hand-in-hand. Informatics is the emerging discipline that combines the two. In natural and artificial systems, information is carried at many levels, ranging, for example, from biological molecules and electronic devices through nervous systems and computers and on to societies and large-scale distributed systems. It is characteristic that information carried at higher levels is represented by informational processes at lower levels. Each of these levels is the proper object of study for some discipline of science or engineering. Informatics aims to develop and apply firm theoretical and mathematical foundations for the features that are common to all computational systems. Progress in data mining applications and its implications are manifested in the areas of information management in healthcare organizations, health informatics, epidemiology, patient care and monitoring systems, assistive technology, large-scale image analysis to information extraction and automatic identification of unknown classes. Various algorithms associated with data mining have significantly helped to understand medical data more clearly, by distinguishing pathological data from normal data, for supporting decision-making as well as visualization and identification of hidden complex relationships between diagnostic features of different patient groups. In most of the fields predictive and modeling insilico research studies are on the rise. More computer based data, research articles are published in this field. The aim of this Book is to bring in informatics and data mining research, access both focused and multidisciplinary work in the area of informatics. This book also ponders to publish ideas, hypothesis and suggestions regarding software development cycles, informatics and data mining. The advent of high-performance computing has benefited various disciplines in finding practical solutions to their problems. Signal processing, image processing, and data mining tools have been developed for effective analysis of information. Informatics studies the representation, processing, and communication of information in natural and engineered systems. It has computational, cognitive and social aspects. The central notion is the transformation of information - whether by computation or communication, whether by organisms or artifacts. Understanding informational phenomena - such as computation, cognition, and communication - enables technological advances. In turn, technological progress prompts scientific enquiry. The science of information and the engineering of information systems develop hand-in-hand. Informatics is the emerging discipline that combines the two. In natural and artificial systems, information is carried at many levels, ranging, for example, from biological molecules and electronic devices through nervous systems and computers and on to societies and large-scale distributed systems. It is characteristic that information carried at higher levels is represented by informational processes at lower levels. Each of these levels is the proper object of study for some discipline of science or engineering. Informatics aims to develop and apply firm theoretical and mathematical foundations for the features that are common to all computational systems. Progress in data mining applications and its implications are manifested in the areas of information management in healthcare organizations, health informatics, epidemiology, patient care and monitoring systems, assistive technology, large-scale image analysis to information extraction and automatic identification of unknown classes. Various algorithms associated with data mining have significantly helped to understand medical data more clearly, by distinguishing pathological data from normal data, for supporting decision-making as well as visualization and identification of hidden complex relationships between diagnostic features of different patient groups. In most of the fields predictive and modeling insilico research studies are on the rise. More computer based data, research articles are published in this field. The aim of this Book is to bring in informatics and data mining research, access both focused and multidisciplinary work in the area of informatics. This book also ponders to publish ideas, hypothesis and suggestions regarding software development cycles, informatics and data mining.