Delivery included to the United States

Genetic Programming for Image Classification

Genetic Programming for Image Classification An Automated Approach to Feature Learning - Adaptation, Learning, and Optimization

1st Edition 2021

Hardback (09 Feb 2021)

  • $192.77
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 7 days

Other formats & editions

New
Paperback (10 Feb 2022) $188.47

Publisher's Synopsis

This book offers several new GP approaches to feature learning for image classification. Image classification is an important task in computer vision and machine learning with a wide range of applications. Feature learning is a fundamental step in image classification, but it is difficult due to the high variations of images. Genetic Programming (GP) is an evolutionary computation technique that can automatically evolve computer programs to solve any given problem. This is an important research field of GP and image classification. No book has been published in this field. This book shows how different techniques, e.g., image operators, ensembles, and surrogate, are proposed and employed to improve the accuracy and/or computational efficiency of GP for image classification. The proposed methods are applied to many different image classification tasks, and the effectiveness and interpretability of the learned models will be demonstrated. This book is suitable as a graduate andpostgraduate level textbook in artificial intelligence, machine learning, computer vision, and evolutionary computation.   

 


Book information

ISBN: 9783030659264
Publisher: Springer International Publishing
Imprint: Springer
Pub date:
Edition: 1st Edition 2021
Language: English
Number of pages: 258
Weight: 600g
Height: 235mm
Width: 155mm
Spine width: 18mm