Delivery included to the United States

Generalized Linear Models and Extensions

Generalized Linear Models and Extensions

Fourth edition

Paperback (28 Jun 2018)

Not available for sale

Out of stock

This service is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Publisher's Synopsis

Generalized linear models (GLMs) extend linear regression to models with a non-Gaussian, or even discrete, response. GLM theory is predicated on the exponential family of distributions-a class so rich that it includes the commonly used logit, probit, and Poisson models. Although one can fit these models in Stata by using specialized commands (for example, logit for logit models), fitting them as GLMs with Stata's glm command offers some advantages. For example, model diagnostics may be calculated and interpreted similarly regardless of the assumed distribution.

This text thoroughly covers GLMs, both theoretically and computationally, with an emphasis on Stata. The theory consists of showing how the various GLMs are special cases of the exponential family, showing general properties of this family of distributions, and showing the derivation of maximum likelihood (ML) estimators and standard errors. Hardin and Hilbe show how iteratively reweighted least squares, another method of parameter estimation, are a consequence of ML estimation using Fisher scoring.

Book information

ISBN: 9781597182256
Publisher: Stata Press
Imprint: Stata Press
Pub date:
Edition: Fourth edition
DEWEY: 519.5
DEWEY edition: 23
Language: English
Number of pages: 598
Weight: 1242g
Height: 187mm
Width: 241mm
Spine width: 41mm