Publisher's Synopsis
The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration. Biomaterial is a nonviable substance used in a medical device intended to interact with biological systems. Their usage within a physiologic medium needs the characteristic features such as efficient and reliable. These characteristic features have provided with a suitable combination of chemical, mechanical, physical and biological properties. Nowadays, biomaterials are commonly used in various medical devices and systems; synthetic skin; drug delivery systems; tissue cultures; hybrid organs; synthetic blood vessels; artificial hearts; cardiac pacemakers; screws, plates, wires and pins for bone treatments; total artificial joint implants; skull reconstruction; dental and maxillofacial applications. Functional Biomaterials for Medicine and Healthcare, a compilation of review articles, is designed from a medical perspective and is aimed at academics as well as medical and biomedical engineering students who want to become involved in the design, development, manufacturing or use of prostheses or medical devices. It covers basic information on the complexities of implant and medical device development. The design process, technology assessment, animal experiments, histocompatibility, tissue compatibility and infections are described. It is an essential reading for scientists, engineers, and clinicians, and a useful reference tool for undergraduate and postgraduate students. Functional biomaterials made of natural building blocks can offer significant advantages over purely synthetic systems, and the use of human proteins, functional peptides or nucleic acids as the precursor materials is common for the minimization of the immunogenicity of the delivery materials. However, the biocompatibility and biodegradability of functional structures with desired properties is affected by the biomaterials' structural characteristics and building block assembly pathways. Moreover, the elevated sensitivity of natural building blocks to environmental changes makes structural analysis of such biomaterial systems challenging. The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration. Biomaterial is a nonviable substance used in a medical device intended to interact with biological systems. Their usage within a physiologic medium needs the characteristic features such as efficient and reliable. These characteristic features have provided with a suitable combination of chemical, mechanical, physical and biological properties. Nowadays, biomaterials are commonly used in various medical devices and systems; synthetic skin; drug delivery systems; tissue cultures; hybrid organs; synthetic blood vessels; artificial hearts; cardiac pacemakers; screws, plates, wires and pins for bone treatments; total artificial joint implants; skull reconstruction; dental and maxillofacial applications. Functional Biomaterials for Medicine and Healthcare, a compilation of review articles, is designed from a medical perspective and is aimed at academics as well as medical and biomedical engineering students who want to become involved in the design, development, manufacturing or use of prostheses or medical devices. It covers basic information on the complexities of implant and medical device development. The design process, technology assessment, animal experiments, histocompatibility, tissue compatibility and infections are described. It is an essential reading for scientists, engineers, and clinicians, and a useful reference tool for undergraduate and postgraduate students. Functional biomaterials made of natural building blocks can offer significant advantages over purely synthetic systems, and the use of human proteins, functional peptides or nucleic acids as the precursor materials is common for the minimization of the immunogenicity of the delivery materials. However, the biocompatibility and biodegradability of functional structures with desired properties is affected by the biomaterials' structural characteristics and building block assembly pathways. Moreover, the elevated sensitivity of natural building blocks to environmental changes makes structural analysis of such biomaterial systems challenging. The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration. Biomaterial is a nonviable substance used in a medical device intended to interact with biological systems. Their usage within a physiologic medium needs the characteristic features such as efficient and reliable. These characteristic features have provided with a suitable combination of chemical, mechanical, physical and biological properties. Nowadays, biomaterials are commonly used in various medical devices and systems; synthetic skin; drug delivery systems; tissue cultures; hybrid organs; synthetic blood vessels; artificial hearts; cardiac pacemakers; screws, plates, wires and pins for bone treatments; total artificial joint implants; skull reconstruction; dental and maxillofacial applications. Functional Biomaterials for Medicine and Healthcare, a compilation of review articles, is designed from a medical perspective and is aimed at academics as well as medical and biomedical engineering students who want to become involved in the design, development, manufacturing or use of prostheses or medical devices. It covers basic information on the complexities of implant and medical device development. The design process, technology assessment, animal experiments, histocompatibility, tissue compatibility and infections are described. It is an essential reading for scientists, engineers, and clinicians, and a useful reference tool for undergraduate and postgraduate students. Functional biomaterials made of natural building blocks can offer significant advantages over purely synthetic systems, and the use of human proteins, functional peptides or nucleic acids as the precursor materials is common for the minimization of the immunogenicity of the delivery materials. However, the biocompatibility and biodegradability of functional structures with desired properties is affected by the biomaterials' structural characteristics and building block assembly pathways. Moreover, the elevated sensitivity of natural building blocks to environmental changes makes structural analysis of such biomaterial systems challenging.