Delivery included to the United States

Embeddings in Natural Language Processing

Embeddings in Natural Language Processing Theory and Advances in Vector Representations of Meaning - Synthesis Lectures on Human Language Technologies

Paperback (13 Nov 2020)

Save $9.61

  • RRP $68.35
  • $58.74
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 7 days

Publisher's Synopsis

Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.

Book information

ISBN: 9783031010491
Publisher: Springer International Publishing
Imprint: Springer
Pub date:
Language: English
Number of pages: 157
Weight: 313g
Height: 235mm
Width: 191mm
Spine width: 10mm