Delivery included to the United States

Distribution Dependent Stochastic Differential Equations

Distribution Dependent Stochastic Differential Equations - World Scientific Series on Probability Theory and Its Applications

Hardback (07 Oct 2024)

  • $188.72
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 72 hours

Publisher's Synopsis

Corresponding to the link of Itô's stochastic differential equations (SDEs) and linear parabolic equations, distribution dependent SDEs (DDSDEs) characterize nonlinear Fokker-Planck equations. This type of SDEs is named after McKean-Vlasov due to the pioneering work of H P McKean (1966), where an expectation dependent SDE is proposed to characterize nonlinear PDEs for Maxwellian gas. Moreover, by using the propagation of chaos for Kac particle systems, weak solutions of DDSDEs are constructed as weak limits of mean field particle systems when the number of particles goes to infinity, so that DDSDEs are also called mean-field SDEs. To restrict a DDSDE in a domain, we consider the reflection boundary by following the line of A V Skorohod (1961).This book provides a self-contained account on singular SDEs and DDSDEs with or without reflection. It covers well-posedness and regularities for singular stochastic differential equations; well-posedness for singular reflected SDEs; well-posedness of singular DDSDEs; Harnack inequalities and derivative formulas for singular DDSDEs; long time behaviors for DDSDEs; DDSDEs with reflecting boundary; and killed DDSDEs.

Book information

ISBN: 9789811280146
Publisher: World Scientific
Imprint: World Scientific Publishing
Pub date:
DEWEY: 519.22
DEWEY edition: 23/eng/20240929
Language: English
Number of pages: 376
Weight: 667g
Height: 229mm
Width: 152mm
Spine width: 22mm