Delivery included to the United States

Density Ratio Estimation in Machine Learning

Density Ratio Estimation in Machine Learning

Paperback (31 Mar 2018)

Save $2.28

  • RRP $51.94
  • $49.66
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 2-3 weeks

Other formats & editions

New
Hardback (17 May 2012) $188.82

Publisher's Synopsis

Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting and density ratio fitting, as well as describing how these can be applied to machine learning. The book provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning.

About the Publisher

Cambridge University Press

Cambridge University Press dates from 1534 and is part of the University of Cambridge. We further the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

Book information

ISBN: 9781108461733
Publisher: Cambridge University Press
Imprint: Cambridge University Press
Pub date:
DEWEY: 006.31
DEWEY edition: 23
Language: English
Number of pages: 341
Weight: 528g
Height: 159mm
Width: 234mm
Spine width: 24mm