Publisher's Synopsis
This book guides you through the entire development lifecycle, starting with a solid foundation in the modern features and essential libraries, like Eigen, for C++. You will master core deep learning concepts by implementing convolutions, fully connected layers, and activation functions, while learning to optimize models using gradient descent, backpropagation, and advanced optimizers like SGD, Momentum, RMSProp, and Adam. Crucial topics like cross-validation, regularization, and performance evaluation are covered, ensuring robust and reliable applications. Finally, you will dive into computer vision, building image classifiers and object localization systems, leveraging transfer learning for optimal performance.