Publisher's Synopsis
Many pressure-measuring devices measure not absolute pressure but only difference in pressure. For example, a Bourdon-tube gage indicates only the difference between the pressure in the fluid to which it is tapped and the pressure in the atmosphere. In this case, then, the reference pressure is actually the atmospheric pressure. This type of pressure reading is called gage pressure. Fluid Statics and Fluid Dynamics form the two constituents of Fluid Mechanics. Fluid Statics deals with fluids at rest while Fluid Dynamics studies fluids in motion. A fluid at rest has no shear stress. Consequently, any force developed is only due to normal stresses i.e, pressure. Such a condition is termed the hydrostatic condition. In fact, the analysis of hydrostatic systems is greatly simplified when compared to that for fluids in motion. Though fluid in motion gives rise to many interesting phenomena, fluid at rest is by no means less important. Its importance becomes apparent when we note that the atmosphere around us can be considered to be at rest and so are the oceans. The simple theory developed here finds its application in determining pressures at different levels of atmosphere and in many pressure-measuring devices. Further, the theory is employed to calculate force on submerged objects such as ships, parts of ships and submarines. The other application of the theory is in the calculation of forces on dams and other hydraulic systems. Surface forces are brought about by contact of fluid with another fluid or a solid body. The best example of this is pressure. The surface forces depend upon surface area of contact and do not depend upon the volume of fluid. On the other hand, body forces depend upon the volume of the substance and are distributed through the fluid element. Examples are weight of any substance, electromagnetic forces etc.