Delivery included to the United States

Attractor Dimension Estimates for Dynamical Systems: Theory and Computation

Attractor Dimension Estimates for Dynamical Systems: Theory and Computation Dedicated to Gennady Leonov - Emergence, Complexity and Computation

Paperback (03 Jul 2021)

  • $269.54
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 7 days

Other formats & editions

New
Hardback (03 Jul 2020) $272.75

Publisher's Synopsis

This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Carathéodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Hénon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.

Book information

ISBN: 9783030509897
Publisher: Springer International Publishing
Imprint: Springer
Pub date:
Language: English
Number of pages: 545
Weight: 860g
Height: 235mm
Width: 155mm
Spine width: 29mm