Delivery included to the United States

深度信用风险 (Deep Credit Risk) - 使用Python进行机器学习

深度信用风险 (Deep Credit Risk) - 使用Python进行机器学习

Paperback (23 Jul 2021) | Chinese

  • $76.21
Add to basket

Includes delivery to the United States

10+ copies available online - Usually dispatched within 7 days

Publisher's Synopsis

- 了解流动性,房屋净值和许多其他关键银行业特征变量的作用;

- 选择并处理变量;

- 预测违约、偿付、损失率和风险敞口;

- 利用危机前特征预测经济衰退和危机后果;

- 理解COVID-19对信用风险带来的影响;

- 将创新的抽样技术应用于模型训练和验证;

- 从Logit分类器到随机森林和神经网络的深入学习;

- 进行无监督聚类、主成分和贝叶斯技术的应用;

- 为CECL、IFRS 9和CCAR建立多周期模型;

- 建立用于在险价值和期望损失的信贷组合相关模型;

- 使用更多真实的信用风险数据并运行超过1500行的代码...


- Understand the role of liquidity, equity and many other key banking features

- Engineer and select features

- Predict defaults, payoffs, loss rates and exposures

- Predict downturn and crisis outcomes using pre-crisis features

- Understand the implications of COVID-19

- Apply innovative sampling techniques for model training and validation

- Deep-learn from Logit Classifiers to Random Forests and Neural Networks

- Do unsupervised Clustering, Principal Components and Bayesian Techniques

- Build multi-period models for CECL, IFRS 9 and CCAR

- Build credit portfolio correlation models for VaR and Expected Shortfal

- Run over 1,500 lines of pandas, statsmodels and scikit-learn Python code

- Access real credit data and much more ...

Book information

ISBN: 9780645245202
Publisher: Deep Credit Risk
Imprint: Deep Credit Risk
Pub date:
Language: Chinese
Number of pages: 456
Weight: 776g
Height: 235mm
Width: 191mm
Spine width: 23mm